Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.196
Filtrar
1.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561350

RESUMO

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564636

RESUMO

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação , Hipóxia , Transcrição Gênica , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Oncol Rep ; 51(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606512

RESUMO

As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain­containing protein 4) is a chromatin­associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo­ and radiotherapy allowing de­intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4­targeted drugs for the treatment of patients with HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Nucleares , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio
4.
Life Sci ; 345: 122604, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580196

RESUMO

AIMS: Intestinal barrier dysfunction is the initial and propagable factor of sepsis in which acute kidney injury (AKI) has been considered as a common life-threatening complication. Our recent study identifies the regulatory role of Pellino1 in tubular death under inflammatory conditions in vitro. The objective of our current study is to explore the impact of Pellino1 on gut-kidney axis during septic AKI and uncover the molecular mechanism (s) underlying this process. MATERIALS AND METHODS: Immunohistochemistry (IHC) was conducted to evaluate Pellino1 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels in renal biopsies from critically ill patients with a clinical diagnosis of sepsis. Functional and mechanistic studies were characterized in septic models of the Peli-knockout (Peli1-/-) mice by histopathological staining, enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, biochemical detection, CRISPR/Cas9-mediated gene editing and intestinal organoid. KEY FINDINGS: Pellino1, together with NLRP3, are highly expressed in renal biopsies from critically ill patients diagnosed with sepsis and kidney tissues of septic mice. The Peli1-/- mice with sepsis become less prone to develop AKI and have markedly compromised NLRP3 activation in kidney. Loss of Peli1 endows septic mice refractory to intestinal inflammation, barrier permeability and enterocyte apoptosis that requires stimulator of interferons genes (STING) pathway. Administration of STING agonist DMXAA deteriorates AKI and mortality of septic Peli1-/- mice in the presence of kidney-specific NLRP3 reconstitution. SIGNIFICANCE: Our studies suggest that Pellino1 has a principal role in orchestrating gut homeostasis towards renal pathophysiology, thus providing a potential therapeutic target for septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estado Terminal , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Sepse/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561375

RESUMO

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Assuntos
Sarcoma , Animais , Humanos , Camundongos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Sarcoma/genética , Sarcoma/patologia , Ubiquitinação , Regulação para Cima
6.
Sci Rep ; 14(1): 8246, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589525

RESUMO

MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Via de Sinalização Hippo , Transdução de Sinais , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Crônica , Proliferação de Células/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
8.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
9.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557488

RESUMO

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.


Assuntos
Neoplasias da Mama , Proteína 1 Homóloga a MutL , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Instabilidade Genômica , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo
10.
Plant Sci ; 343: 112081, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579979

RESUMO

Chlorophyll biosynthesis and breakdown, important cellular processes for photosynthesis, occur in the chloroplast. As a semi-autonomous organelle, chloroplast development is mainly regulated by nuclear-encoded chloroplast proteins and proteins encoded by itself. However, the knowledge of chloroplast development regulated by other organelles is limited. Here, we report that the nuclear-localized XAP5 CIRCADIAN TIMEKEEPER (XCT) is essential for chloroplast development in Arabidopsis. In this study, significantly decreased chlorophyll content phenotypes of cotyledons and subsequently emerging organs from shoot apical meristem were observed in xct-2. XCT is constitutively expressed in various tissues and localized in the nuclear with speckle patterns. RNA-seq analysis identified 207 differently spliced genes and 1511 differently expressed genes, in which chloroplast development-, chlorophyll metabolism- and photosynthesis-related genes were enriched. Further biochemical assays suggested that XCT was co-purified with the well-known splicing factors and transcription machinery, suggesting dual functions of XCT in gene transcription and splicing. Interestingly, we also found that the chlorophyll contents in xct-2 significantly decreased under high temperature and high light condition, indicating XCT integrates temperature and light signals to fine-tune the chlorophyll metabolism in Arabidopsis. Therefore, our results provide new insights into chloroplast development regulation by XCT, a nuclear-localized protein, at the transcriptional and post-transcriptional level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Proteínas Nucleares/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Front Immunol ; 15: 1366235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601157

RESUMO

Introduction: The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods: Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results: We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions: We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.


Assuntos
Imunidade Inata , RNA Polimerase II , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Antivirais , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição
12.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632244

RESUMO

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Docetaxel , Neoplasias da Próstata/genética , Próstata/metabolismo , Ubiquitinação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
13.
J Exp Clin Cancer Res ; 43(1): 119, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641828

RESUMO

BACKGROUND: Refractoriness to surgical resection and chemotherapy makes intrahepatic cholangiocarcinoma (ICC) a fatal cancer of the digestive system with high mortality and poor prognosis. Important function invests circRNAs with tremendous potential in biomarkers and therapeutic targets. Nevertheless, it is still unknown how circRNAs contribute to the evolution of ICC. METHODS: CircRNAs in paired ICC and adjacent tissues were screened by circRNAs sequencing. To explore the impact of circRNAs on ICC development, experiments involving gain and loss of function were conducted. Various experimental techniques, including quantitative real-time PCR (qPCR), western blotting, RNA immunoprecipitation (RIP), luciferase reporter assays, RNA pull-down, chromatin immunoprecipitation (ChIP), ubiquitination assays and so on were employed to identify the molecular regulatory role of circRNAs. RESULTS: Herein, we reported a new circRNA, which originates from exon 9 to exon 15 of the SLCO1B3 gene (named circSLCO1B3), orchestrated ICC progression by promoting tumor proliferation, metastasis and immune evasion. We found that the circSLCO1B3 gene was highly overexpressed in ICC tissues and related to lymphatic metastasis, tumor sizes, and tumor differentiation. Mechanically, circSLCO1B3 not only promoted ICC proliferation and metastasis via miR-502-5p/HOXC8/SMAD3 axis, but also eradicated anti-tumor immunity via suppressing ubiquitin-proteasome-dependent degradation of PD-L1 by E3 ubiquitin ligase SPOP. We further found that methyltransferase like 3 (METTL3) mediated the m6A methylation of circSLCO1B3 and stabilizes its expression. Our findings indicate that circSLCO1B3 is a potential prognostic marker and therapeutic target in ICC patients. CONCLUSIONS: Taken together, m6A-modified circSLCO1B3 was correlated with poor prognosis in ICC and promoted ICC progression not only by enhancing proliferation and metastasis via potentiating HOXC8 expression, but also by inducing immune evasion via antagonizing PD-L1 degradation. These results suggest that circSLCO1B3 is a potential prognostic marker and therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Homeodomínio , Metiltransferases , Humanos , Prognóstico , RNA Circular/genética , RNA Circular/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , RNA/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
14.
Sci Rep ; 14(1): 9064, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643236

RESUMO

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Assuntos
Demência Frontotemporal , Humanos , Progranulinas/metabolismo , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Epigênese Genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
15.
PeerJ ; 12: e17002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515461

RESUMO

Background: The incidence of non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) has been increasing. However, the role of glycosylation, an important modification that alters cellular differentiation and immune regulation, in the progression of NAFLD to HCC is rare. Methods: We used the NAFLD-HCC single-cell dataset to identify variation in the expression of glycosylation patterns between different cells and used the HCC bulk dataset to establish a link between these variations and the prognosis of HCC patients. Then, machine learning algorithms were used to identify those glycosylation-related signatures with prognostic significance and to construct a model for predicting the prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice and clinical cohorts. Results: The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher NHGRM scores were associated with a poorer prognosis, stronger immune-related features, immune cell infiltration and immunity scores. Animal experiments, external and clinical cohorts confirmed the expression of these genes. Conclusion: The genetic signature we identified may serve as a potential indicator of survival in patients with NAFLD-HCC and provide new perspectives for elucidating the role of glycosylation-related signatures in this pathologic process.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Hepatopatia Gordurosa não Alcoólica/genética , Neoplasias Hepáticas/genética , Glicosilação , Proteínas Nucleares/metabolismo
16.
Sci Rep ; 14(1): 6270, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491127

RESUMO

ALYREF is considered as a specific mRNA m5C-binding protein which recognizes m5C sites in RNA and facilitates the export of RNA from the nucleus to the cytoplasm. Expressed in various tissues and highly involved in the transcriptional regulation, ALYREF has the potential to become a novel diagnostic marker and therapeutic target for cancer patients. However, few studies focused on its function during carcinogenesis and progress. In order to explore the role of ALYREF on tumorigenesis, TCGA and GTEx databases were used to investigate the relationship of ALYREF to pan-cancer. We found that ALYREF was highly expressed in majority of cancer types and that elevated expression level was positively associated with poor prognosis in many cancers. GO and KEGG analysis showed that ALYREF to be essential in regulating the cell cycle and gene mismatch repair in tumor progression. The correlation analysis of tumor heterogeneity indicated that ALYREF could be specially correlated to the tumor stemness in stomach adenocarcinoma (STAD). Furthermore, we investigate the potential function of ALYREF on gastric carcinogenesis. Prognostic analysis of different molecular subtypes of gastric cancer (GC) unfolded that high ALYREF expression leads to poor prognosis in certain subtypes of GC. Finally, enrichment analysis revealed that ALYREF-related genes possess the function of regulating cell cycle and apoptosis that cause further influences in GC tumor progression. For further verification, we knocked down the expression of ALYREF by siRNA in GC cell line AGS. Knockdown of ALYREF distinctly contributed to inhibition of GC cell proliferation. Moreover, it is observed that knocked-down of ALYREF induced AGS cells arrested in G1 phase and increased cell apoptosis. Our findings highlighted the essential function of ALYREF in tumorigenesis and revealed the specific contribution of ALYREF to gastric carcinogenesis through pan-cancer analysis and biological experiments.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Prognóstico , Biomarcadores Tumorais/genética , RNA Interferente Pequeno , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA
17.
Science ; 384(6691): 119-124, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484038

RESUMO

Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.


Assuntos
Cromátides , 60634 , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Troca de Cromátide Irmã , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , 60634/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
19.
Sci Rep ; 14(1): 7472, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553547

RESUMO

Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.


Assuntos
Quadruplex G , Disostose Mandibulofacial , Animais , Humanos , DNA/metabolismo , Células HEK293 , Células HeLa , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
J Med Chem ; 67(6): 4641-4654, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478885

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have emerged as a therapeutic modality to induce targeted protein degradation (TPD) by harnessing cellular proteolytic degradation machinery. PROTACs which ligand the E3 ligase in a covalent manner have attracted intense interest; however, covalent PROTACs with a broad protein of interest (POI) scope have proven challenging to discover by design. Here, we report the structure-guided design and optimization of Von Hippel-Lindau (VHL) protein-targeted sulfonyl fluorides which covalently bind Ser110 in the HIF1α binding site. We demonstrate that their incorporation in bifunctional degraders induces targeted protein degradation of BRD4 or the androgen receptor without further linker optimization. Our study discloses the first covalent VHL ligands which can be implemented directly in bifunctional degrader design, expanding the substrate scope of covalent E3 ligase PROTACs.


Assuntos
Proteínas Nucleares , Ácidos Sulfínicos , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...